
The Transport Layer Security protocol
An overview

Cryptography, Spring 2009

David Volquartz Lebech

June 11, 2009



Contents

1 Introduction 2

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 TLS Protocol description 3

2.1 TLS Record protocol . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 TLS Handshake protocol . . . . . . . . . . . . . . . . . . . . . 4
2.3 Overall security procedure . . . . . . . . . . . . . . . . . . . . 4
2.4 Algorithms in TLS . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 Security of TLS . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.5.1 Man-in-the-middle attack . . . . . . . . . . . . . . . . 5
2.5.2 CBC Block Cipher attack . . . . . . . . . . . . . . . . 6

3 Cryptographic algorithms 7

3.1 AES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.1 Mathematical foundation . . . . . . . . . . . . . . . . 7
3.1.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.3 Security and use in TLS . . . . . . . . . . . . . . . . . 9

3.2 SHA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.1 Mathematical foundation . . . . . . . . . . . . . . . . 10
3.2.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.3 Security and use in TLS . . . . . . . . . . . . . . . . . 11

3.3 Relationship of TLS algorithms . . . . . . . . . . . . . . . . . 11

4 Conclusion 12

A AES 13

A.1 SubBytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
A.2 ShiftRows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
A.3 MixColumns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
A.4 AddRoundKey . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
A.5 S-Box for AES . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1



1 Introduction

Security is one of the biggest issues on the Internet and an area of enormous
ongoing research. When we shop online or log into our web banking account,
we want to be sure that no one can pick up sensitive information about us
like our credit card number and we want this security to be transparent and
ubiquitous whenever we share sensitive information.

Cryptography plays a major role in helping to prevent eavesdropping
of personal information. One of the most widespread protocols used for
secure communication on the Internet is the Transport Layer Security (TLS)
protocol, previously known as the Secure Socket Layer (SSL) protocol. In
this paper, I will explore the popular protocol, giving an overview of how it
works and what algorithms it uses.

The paper has two main parts. In section 2, I will �rst describe the
TLS protocol itself to provide insight on how the protocol works and how
secure it is. In section 3, I will describe two particular algorithms that are
often used in TLS. I will not go deep into any speci�c technical details and
I will not supply any implementation. This paper should thus be seen as an
introduction to the TLS protocol and not as a technical documentation.

1.1 Motivation

Every time we shop online, log into our web banking account or even check
our emails, we are usually using a secure connection to communicate pass-
words and other information. In most cases, the https protocol is used for
secure communication which is easily seen in the beginning of the website
address and the typical lock symbol that most web browsers use to represent
secure browsing. Https is in fact an implementation of the TLS protocol and
TLS is thus a de facto standard for secure communication on the Internet
[3, page 314]. For this reason, I think that it is interesting and relevant to
explore this topic in more detail because it is greatly related to cryptography.

1.2 Background

The SSL protocol was originally developed by Netscape. The most recent
version is 3.0 [6] which was released in 1996. The SSL protocol is now
considered obsolete and has since been replaced by the TLS protocol which
is currently in version 1.2 [5] and is maintained by the Internet Engineering
Task Force (IETF). The goal of this protocol is to provide:

1. Cryptographic security

2



2. Interoperability

3. Extensibility

4. Relative e�ciency

In a cryptographic context, cryptographic security is naturally the most in-
teresting and I will only focus on this part of the protocol throughout this
paper. I will thus not go into detail with the e�ciency of the protocol even
though this is sometimes also an interesting aspect from a cryptographic
point of view.

2 TLS Protocol description

The TLS protocol consists of two layers which are interesting in each their
way because they provide di�erent functionality but they are still related and
not independent. I will describe each of them separately. The description
is based on the original request for comments (RFC) [5] as well as digested
versions found in [3, section 7.6.3] and [11, section 10.7].

2.1 TLS Record protocol

The TLS Record protocol layer is positioned just above the Transport layer
of the network which usually uses the TCP protocol. The record layer is
responsible for receiving and encrypting messages from layers above it (see
section 2.2) so that the messages can be sent with the Transport layer, e.g.
the TCP protocol. The environment in which the record protocol operates is
called a connection state. This state contains the information necessary for
the record protocol to process a message from above layers and send it over
the wire. This information includes a speci�cation of the currently used com-
pression, encryption and message authentication code (MAC) algorithms.

The record protocol works in the following way:

1. A message M is passed to the record protocol.

2. M is decomposed into smaller TLSPlainText blocks.

3. The blocks are optionally compressed into TLSCompressed blocks.

4. The blocks are encrypted to produce TLSCiphertext blocks. This is
done using either a stream cipher, a block cipher or an Authenticated
Encryption with Associated Data (AEAD) cipher.

5. The blocks are transferred as e.g. TCP packets.

3



2.2 TLS Handshake protocol

Above the record protocol layer is the handshake protocol layer. The hand-
shake protocol layer has three sub-protocols. A protocol for alerts, one for
changing ciphers and the handshake protocol. The �rst two are not impor-
tant in this context.

The handshake protocol is responsible for setting up a secure connection
between the client and the server and negotiating the terms of the connection.
This includes agreeing on a protocol version, which algorithms to use and a
pre-master secret (see section 2.3) as well as passing necessary parameters
to the record protocol and an optional authentication of each end of the
connection. [5, 3] both provide good descriptions of the actual handshake,
i.e. the messages passed back and forth between client and server.

Of particular interest for us is the negotiation of the cryptographic algo-
rithms to be used for a secure connection. The algorithms are collectively
gathered in so-called cipher suites. More speci�cally, a cipher suite consists
of an algorithm for key exchange, encryption and MAC as well as a pseu-
dorandom function (PRF). I will elaborate a little on cipher suites and how
they are negotiated in the next section.

2.3 Overall security procedure

While the two previous sections brie�y described the actual parts of the TLS
protocol, the overall procedure of interest in the cryptographic context can
be summarized as such:

1. A client wants to set up a connection with a server.

2. The server sends its public key to the client and the client authenticates
the key. The system is vulnerable at this point because no secret key
has been chosen yet. Thus, the client has preferably already received
the server's public key from a trusted authority (see section 2.5.1).

3. Using a public key cryptographic algorithm, a pre-master secret key is
generated and sent. This can happen on both client and server side.

4. Both client and server calculates a master key from the pre-master key.

5. The client and server communicates securely using the master key and
a symmetric key cryptographic algorithm as well as an algorithm for
message authentication (the MAC algorithm).

4



2.4 Algorithms in TLS

The TLS protocol does not de�ne any algorithms itself. Rather it uses well-
known cryptographic algorithms that are agreed upon between client and
server through the cipher suites. The exact cipher suites are de�ned in [7]
and include the algorithms:

Key exchange: RSA, Di�e-Hellman, KRB5, PSK, ECDH, SRP and oth-
ers.

Encryption: 3DES, AES, IDEA, CAMELLIA, RC4 and others.

MAC: SHA, MD5 and others.

In other words, TLS supports quite a few di�erent algorithms. In section 3
I will describe two of them.

2.5 Security of TLS

Although TLS is generally considered a secure protocol (hence its widespread
use on the Internet), there is a few potential threats. In this section, I will
cover possible attacks on TLS.

2.5.1 Man-in-the-middle attack

A man-in-the-middle attack refers to a method of active eavesdropping a
connection between a client and a server that use public key cryptography.
The attack can be summarized like this (using our usual protagonists: Bob,
Alice and Eve):

1. Bob wants to send a message to Alice and therefore requests Alice's
public key.

2. Alice sends her public key to Bob.

3. Eve intercepts the message and replaces Alice's public key with her
own.

4. Bob encrypts his message with Eve's key, thinking it is Alice's key.

5. Eve intercepts Bob's message, decrypts it, encrypts it with Alice's key
and sends the message to Alice who will not be suspicious.

5



This attack is conceptually and practically �easy� to execute. It �only� re-
quires access to the communication channel and the possibility of tampering
with messages. Since TLS uses public key cryptography for key exchange, it
is potentially a security threat.

According to the protocol description [5], this attack can be prevented if
the server is required to supply a certi�cate of authenticity from a mutually
trusted authority (e.g. a certi�cate authority) as mentioned earlier. On
the other hand, TLS also supports totally anonymous sessions and these
are �inherently vulnerable� [5, section F.1.1] so these should be avoided for
sensitive transactions.

2.5.2 CBC Block Cipher attack

Under certain circumstances it is possible to compromise the TLS protocol
when cipher block chaining (CBC) block ciphers are used for encryption.
[8] describes an attack that needs to be considered: Earlier versions of TLS
used two di�erent error codes for an incorrect MAC record and an incorrectly
decrypted ciphertext. The idea of the attack is to exploit the fact that a block
cipher pads values to the end of a block to give them a certain size. This
could potentially be used by Eve in the following way:

1. Eve picks up two consecutive ciphertexts, makes a guess of the last bit
of the plaintext, alters the message, and resends a fake ciphertext.

2. If the guess was wrong, Eve will get a decryption_failed error.

3. If the guess was correct, then the last bit will look like proper padding
of the block and Eve will get a bad_record_mac instead. In other
words, a small part of the plaintext has been guessed correctly.

The attack has been partly invalidated because the error code decryption_failed
is not used in TLS 1.2 anymore. Also, there is no direct access to error codes
so the attack is based on the assumptions that the attacker can gain access
to at least log�les or similar information to reveal the error message and that
the same message is repeatedly encrypted and sent.

In [2], a timing attack is described that share some of the ideas with the
attack just described. The attack exploits the fact that in some implemen-
tations of TLS, the MAC is not calculated if the padding of a ciphertext is
wrong. The attacker can measure the time it takes to compute a MAC to
deduce whether or not the padding was correct. This attack is also based on
a lot of assumptions but should still be taken seriously. A way of avoiding the

6



attack is to just calculate a MAC even though the padding of a ciphertext
is wrong, as suggested in [5, 8].

3 Cryptographic algorithms

During the term we have treated modern cryptography mainly with focus
on public key cryptography in the form of e.g. the RSA and Di�e-Hellman
algorithms. We have not talked so much about symmetric key algorithms
like AES or MAC algorithms like SHA except for some historical encryption
ciphers. The TLS protocol uses three cryptographic algorithms (the cipher
suite) to achieve its security. In this �nal section, I will explore two contem-
porary and important cryptographic algorithms (AES and SHA) and try to
relate them to TLS.

3.1 AES

The Advanced Encryption Standard (AES) algorithm is a symmetric block
cipher algorithm that was originally invented by Joan Daemen and Vincent
Rijmen. It was selected in 2000 to be the new o�cial encryption standard of
the US, replacing the aging Data Encryption Standard (DES) [4, introduc-
tion].

The algorithm can process 128 bit (i.e. 16 byte) blocks using a key of
either 128, 192 or 256 bit length. The 16 byte block is represented by 4 by
4 matrix and the algorithm works by substitution and permutation of the
bytes in the array. This also means that a block of ciphertext has the same
length as a block of plaintext [9].

3.1.1 Mathematical foundation

The AES algorithm uses the arithmetic on the �nite �eld GF (28) which
is nicely described in [11, section 3.11.2]. All elements in this �eld can be
represented as 8-bit bytes. For example the byte:

b7b6b5b4b3b2b1b0 = 11001100

can be described by:

1x7 + 1x6 + 0x5 + 0x4 + 1x3 + 1x2 + 0x + 0

The addition of two bytes in this �eld is the exclusive or operation (XOR).
In AES, we are working modulo an irreducible polynomial:

x8 + x4 + x3 + x + 1

7



which makes multiplication a bit tricky and I will not describe it here. A
method for multiplication is described in both [11, section 3.11.2] and [9].

3.1.2 Procedure

The AES algorithm can be described by the following steps (collectively
called a round) applied to a single 16 byte block [9, 11]:

1. A non-linear byte substitution called the SubBytes transformation. In
this step each byte is substituted for another byte that is found in
a lookuptable called S-Box. The S-Box is constructed by taking the
multiplicative inverse over GF (28) and applying an a�ne transform to
the bits. The S-Box is shown in appendix A.5. The substitution byte
is found according to the hexadecimal number for the byte. A byte
with value e.g. 53 will be substituted for the value in the S-Box at row
5, column 3.

2. A cyclical shift of the bytes in a row, applied to the last 3 rows (out
of 4) of the block. This is called the ShiftRow transformation. More
speci�cally, bytes in row 2 is shifted 1 place to the right, in row 3 2
places and in row 4 3 places.

3. A column-by-column transformation called the MixColumns transfor-
mation. Each column is considered a polynomial in GF (28) and is
multiplied with a �xed polynomial 3x3 + 1x2 + 1x + 2 modulo x4 + 1.

4. A round key is derived from the key. This roundkey is a 4 by 4 matrix,
i.e. same size as the block. In the AddRoundKey transformation, this
roundkey is XOR'ed with the block.

In appendix A, I have supplied �gures that show the intuition of the above
four steps. For a 128 bit key, the encryption with AES is exactly as such:

1. Do an AddRoundKey step.

2. Loop the above 4 steps 9 times.

3. Run the above 4 steps 1 time but without step 3, i.e. the MixColumns
step.

In each iteration of the algorithm just outlined, a new round key is used. A
so-called key schedule is created from the initial secret key. The secret key
is also represented as a 4 by 4 matrix and via a key expansion procedure,

8



extra columns are added for a total of 44 columns. The key schedule is thus
a 4 by 44 matrix. The round key is selected from this matrix. I will not go
into detail with the procedure of key expansion here.

3.1.3 Security and use in TLS

There seems to be only one successful attempt at breaking the AES algo-
rithm, namely timing (or side-channel) attacks, one of them which is de-
scribed in [1]. The attack is based on the basic assumption that lookup
times in an array depend on the array index (i.e. in the S-Box). Further-
more, if this is correct then the execution time for the whole algorithm is
variable and in correspondance with the table lookups which, in turn, will
leak information about the key.

The attack can be avoided with the correct implementation of AES, i.e.
constant-time table lookups. And as with a lot of other attacks, it is still
based on assumptions that only hold under certain conditions, for example
a server leaking too mich information. It is thus reasonable to conclude that
AES is a secure algorithm which probably explains why it is often used in
the TLS protocol.

3.2 SHA

The Secure Hash Algorithm (SHA) belongs to a group of algorithms known
as hash functions. A hash function converts a message into a message digest

of a �xed length which is similar to a ciphertext. The hash function should
have the following properties [11, section 8.1]:

1. One-way. Contrary to a symmetric key algorithm, a hash function
is meant to be a one-way function. It should thus be very hard (or
impossible) to reverse the hash function and �nd the original message
for a given message digest.

2. Fast. The hash function should be able to calculate a message digest
fast.

3. Collision-free. The hash function should avoid hashing di�erent mes-
sages to the same value.

SHA is an o�cial US standard called Secure Hash Standard and the latest
version of the standard de�nition can be found in [10]. There are several
di�erent SHA hash functions available based on the standard. In this section,
I will describe the SHA-1 function. The description will be based on [10,

9



section 6.1] and [11, section 8.3] and I will not reference these further in this
section.

3.2.1 Mathematical foundation

The mathematical background needed to understand SHA is not particularly
di�cult. The basic tools needed are actually just the usually de�ned bitwise
operators ∧ (and), ∨ (or), ⊕ (addition) and ¬ (negation) as well as X ←↩ r
(shift X r bits to the left) and + which is addition modulo 232. We then
de�ne 80 functions ft like this:

ft(B, C,D) =


(B ∧ C) ∨ (¬B ∧D) if 0 ≤ t ≤ 19

B ⊕ C ⊕D if 20 ≤ t ≤ 39
(B ∧ C) ∨ (B ∧D) ∨ (C ∧D) if 40 ≤ t ≤ 59

B ⊕ C ⊕D if 60 ≤ t ≤ 79

and 80 constants Kt:

Kt =


5a827999 if 0 ≤ t ≤ 19
6ed9eba1 if 20 ≤ t ≤ 39
8f1bbcdc if 40 ≤ t ≤ 59
ca62c1d6 if 60 ≤ t ≤ 79

3.2.2 Procedure

The SHA-1 algorithm can be described by the following steps, given a mes-
sage m:

1. Preprocessing: Pad m with a 1 bit and several 0 bits if necessary and
split the message into n 512 bit blocks mi where i = 0, . . . , n− 1. Set
initial hash values H0 through H4. I will leave out the details for this
step (i.e. the concrete values).

2. For each message block mi, do the following:

(a) De�ne a message schedule Wi, each of which has 32 bits. Let
mi = W0||W1|| · · · ||W15, i.e. mi is the concatenation of the �rst
16 message schedules. For t = 16, . . . , 79 we have:

Wt = (Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16)←↩ 1

(b) Let a = H0, b = H1, c = H2, d = H3 and e = H4.

(c) For each t between 0 and 79, do the following:

10



i. T = a←↩ 5 + ft(b, c, d) + e + Kt + Wt

ii. e = d

iii. d = c

iv. c = (b←↩ 30)
v. b = a

vi. a = T

(d) Let H0 = H0 + a, H1 = H1 + b, H2 = H2 + c, H3 = H3 + d and
H4 = H4 + e.

3. Output the message digest H0||H1||H2||H3||H4.

3.2.3 Security and use in TLS

In TLS, keyed MAC algorithms are used for message integrity [5, section
5]. In particular a certain type of hash functions, keyed hash functions, are
used which are called HMAC. SHA can be used as a keyed hash function in
a special HMAC-SHA version and is thus not used directly since the SHA
itself does not use a key.

The SHA algorithms are generally considered safe. This means that there
is no method for �nding a collision or reversing the hash process and SHA is
thus widely used in TLS and on the Internet in general. However, it seems
that recent research has shown an improvement in �nding collisions in the
SHA-1 algorithm. They are still not e�cient enough to be practical but they
are faster than brute-force. One method is described in [12] but describing
the method is beyond the scope of this paper. For most application, SHA-1
still o�ers great security as a secure hash function but it will be interesting
to see how long this will last.

3.3 Relationship of TLS algorithms

In section 2, I brie�y described the TLS protocol and the cipher suites that
contain the three important cryptographic algorithms that together form
the backbone of the security in TLS. As should be apparent from the above
descriptions, the three algorithms (public/symmetric key and hash function)
are di�erent in their design but share the same basic idea about security,
namely altering a message so that it becomes unreadable.

In TLS, the hash function is primarily used for message integrity pur-
poses. Since the process is irreversible, a hash function cannot be used for
encryption. It would not make sense to encrypt without being able to de-
crypt. The public-key algorithm is only used for the secure exchange of a

11



key to be used by the symmetric key algorithm. This makes sense because
public key algorithms are signi�cantly slower than symmetric key algorithm
[11, section 1.1.2]. It seems logical that TLS uses three di�erent types of
algorithms because they have each their strengths and weaknesses, thereby
improving the overall security of the protocol.

4 Conclusion

In this paper, I have described the Transport Layer Security (TLS) proto-
col. I have given an overview about the cryptographic security of TLS and
how this security is established. Furthermore, I have described two popular
algorithms in more details, namely the symmetric key algorithm AES and
the secure hash function SHA-1.

TLS can generally be considered a secure protocol. It is a hybrid cryp-
tosystem, meaning that it uses both symmetric and public key algorithms
to achieve its security. However, the security does not only come from the
protocol itself. A quote from the RFC for TLS [5]:

The system is only as strong as the weakest key exchange and
authentication algorithm supported, and only trustworthy cryp-
tographic functions should be used.

In other words, the continued improvement of cryptographic methods and
algorithms is the most important way of keeping TLS secure as well as well-
implemented version of the protocol on servers and in browsers. This is very
important since TLS is a de facto standard for secure communications on
the Internet.

One of the unexpected outcomes of my research for this paper was to
realize that seemingly advanced protocol and algorithmic descriptions (i.e.
the RFC and FIPS documents) are surprisingly much easier to read than I
initially thought. This might sound like a trivial fact but indeed I feel that
this is one of the most valuable lessons I have learned from this project.
Although there is de�nitely more advanced protocols and algorithms out
there, TLS is certainly not the least advanced of them all.

During the term, we have been mostly concerned with modern public key
cryptography. By looking into TLS, I have gained valuable knowledge about
other contemporary methods for cryptographic security, particularly on the
Internet, which will bene�t me in future projects.

12



A AES

All �gures and tables in this section are supplied only for quick reference. I
have not produced them myself but all have clear source reference.

A.1 SubBytes

Source: http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

A.2 ShiftRows

Source: http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

A.3 MixColumns

Source: http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

13



A.4 AddRoundKey

Source: http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

14



A.5 S-Box for AES

Source: http://en.wikipedia.org/wiki/Rijndael_S-box

| 0 1 2 3 4 5 6 7 8 9 a b c d e f

---|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|

00 |63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76

10 |ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0

20 |b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15

30 |04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75

40 |09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84

50 |53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf

60 |d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8

70 |51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2

80 |cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73

90 |60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db

a0 |e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79

b0 |e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08

c0 |ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a

d0 |70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e

e0 |e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df

f0 |8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

15



References

[1] Daniel J. Bernstein. Cache-timing attacks on AES. http://cr.yp.to/
antiforgery/cachetiming-20050414.pdf, 2005.

[2] Brice Canvel, Alain Hiltgen, Serge Vaudenay, and Martin Vuagnoux.
Password interception in a SSL/TLS channel. In Advances in Cryptology

- CRYPTO 2003, volume 2729, 2003.

[3] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Sys-

tems Concepts and Design. Addison-Wesley, 4th edition, 2005.

[4] Joan Daemen and Vincent Rijmen. The design of Rijndael, AES - The

Advanced Encryption Standard. Springer-Verlag, 2002.

[5] T. Dierks and E. Rescorla. The Transport Layer Security (TLS)

Protocol, Version 1.2, August 2008. http://tools.ietf.org/html/

rfc5246.

[6] Alan O. Freier, Philip Karlton, and Paul C. Kocher. The
SSL protocol, version 3.0. Technical report, Netscape Commu-
nications Corp., November 1996. http://tools.ietf.org/html/

draft-ietf-tls-ssl-version3-00.

[7] IANA. Transport Layer Security (TLS) Parameters. http://www.iana.
org/assignments/tls-parameters/.

[8] B. Möller. Security of CBC ciphersuites in SSL/TLS: Problems and
countermeasures. http://www.openssl.org/~bodo/tls-cbc.txt.

[9] National Institute of Standards and Technology (NIST). FIPS 197:

Advanced Encryption Standard (AES), 2001.

[10] National Institute of Standards and Technology (NIST). FIPS 180:

Secure Hash Standard (SHS), 2008.

[11] Wade Trappe and Lawrence C. Washington. Introduction to Cryptogra-

phy with Coding Theory. Pearson Prentice Hall, 2nd edition, 2006.

[12] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions
in the full SHA-1. In In Proceedings of Crypto, pages 17�36. Springer,
2005.

16


